The interplay between DSL proteins and ubiquitin ligases in Notch signaling.

نویسندگان

  • Chrysoula Pitsouli
  • Christos Delidakis
چکیده

Lateral inhibition is a pattern refining process that generates single neural precursors from a field of equipotent cells and is mediated via Notch signaling. Of the two Notch ligands Delta and Serrate, only the former was thought to participate in this process. We now show that macrochaete lateral inhibition involves both Delta and Serrate. In this context, Serrate interacts with Neuralized, a ubiquitin ligase that was heretofore thought to act only on Delta. Neuralized physically associates with Serrate and stimulates its endocytosis and signaling activity. We also characterize a mutation in mib1, a Drosophila homolog of mind bomb, another Delta-targeting ubiquitin ligase from zebrafish. Mib1 affects the signaling activity of Delta and Serrate in both lateral inhibition and wing dorsoventral boundary formation. Simultaneous absence of neuralized and mib1 completely abolishes Notch signaling in both aforementioned contexts, making it likely that ubiquitination is a prerequisite for Delta/Serrate signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta.

The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote De...

متن کامل

Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila.

Ligands of the Delta/Serrate/Lag2 (DSL) family must normally be endocytosed in signal-sending cells to activate Notch in signal-receiving cells. DSL internalization and signaling are promoted in zebrafish and Drosophila, respectively, by the ubiquitin ligases Mind bomb (Mib) and Neuralized (Neur). DSL signaling activity also depends on Epsin, a conserved endocytic adaptor thought to target mono...

متن کامل

A Targeted In Vivo RNAi Screen Reveals Deubiquitinases as New Regulators of Notch Signaling

Notch signaling is highly conserved in all metazoan animals and plays critical roles in cell fate specification, cell proliferation, apoptosis, and stem cell maintenance. Although core components of the Notch signaling cascade have been identified, many gaps in the understanding of the Notch signaling pathway remain to be filled. One form of posttranslational regulation, which is controlled by ...

متن کامل

Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized

DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intr...

متن کامل

Ubiquitylation-independent activation of Notch signalling by Delta

Ubiquitylation (ubi) by the E3-ligases Mindbomb1 (Mib1) and Neuralized (Neur) is required for activation of the DSL ligands Delta (Dl) and Serrate (Ser) to activate Notch signalling. These ligases transfer ubiquitin to lysines of the ligands' intracellular domains (ICDs), which sends them into an Epsin-dependent endocytic pathway. Here, we have tested the requirement of ubi of Dl for signalling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 18  شماره 

صفحات  -

تاریخ انتشار 2005